
AUTHORITYHACKER SERP

STUDY 2019

Introduction

As pointed out in the article, the SEO industry lacks enough studies. To our
knowledge, this might be the largest independent study of search results that has
been done in recent years.

The other studies notable studies are Backlinko’s Search Engine Ranking Factors

Study, and several others done by Ahrefs, such as their recent study of 2 Million

Snippets.

While we consider both studies highly reliable and trustworthy, it's important to note
that the former relied on donated data from vendors with business interests in SEO,
and likewise Ahrefs is one of the dominant SEO vendors in the market.

We found it important to obtain all data independently, to benchmark those
findings.

The study by Backlinko served as the original inspiration for organizing this analysis.
We have loosely followed their structure.

“What Scrapping & Analyzing 1.1 Million Search Results Taught Us

About The Way Google Ranks Your Content In 2019”

https://www.authorityhacker.com/million-serps-analyzed/
https://backlinko.com/search-engine-ranking
https://backlinko.com/search-engine-ranking
https://ahrefs.com/blog/featured-snippets-study/
https://ahrefs.com/blog/featured-snippets-study/

ABOUT THE STUDY

We have taken 120,000 random keywords and obtained the top ten Google search
results for each. Then, we took the relevant metrics from Ahrefs, Google APIs, and
the data from our own, custom built crawler.

We worked with the following data points:

To calculate correlations was a pretty straightforward process. While we had a bunch

of simple methods readily available (i.e. Pearson, Kendall, Spearman) using Python

libraries (Scipy, Numpy, Pandas) for most analyses we only required a simple
arithmetic (i.e. calculating HTTPS in URLs)

Keyword Volume URL Country Difficulty Clicks

CPS
Return

Rate

Parent

Topic

Parent

Topic

Volume

Referring

Domains

Domain

rating

Ahrefs

Rank
Traffic Keywords CPC Position H1 Tag

Meta

Descriptio

n

HTML

Body Text
Title Tag

iFrame

Elements

PageSpeed

Insights

LightHouse

Audit

Google Keyword Planner

Ahrefs Keyword Explorer

AuthorityHacker Crawler

Google PageSpeed Insights

TERMINOLOGY

• SERP: A search engine results page (SERP) is the list of results that a search

engine returns in response to a specific word or phrase query.

• SERP Feature: A result on a Google Search Engine Results Page (SERP) that is

not a traditional result such as a link to an article or a website. Examples

include rich snippets, knowledge graph, tweets, etc.

• Keyword Search Volume (Volume): The volume (or number) of searches for

a particular keyword in one month.

• Parent Topic: When getting results for a particular keyword, the parent topic

represents the highest volume keyword that the number one page ranks for.

• Ahrefs Rank: A metric developed and used by Ahrefs to order all websites

from high to low based on the quality and size of their backlinks.

• Domain Rating: A proprietary Ahrefs' metric that shows the strength of a

target website's total backlink profile (in terms of its size and quality).

• Referring Domains: The number of unique domains with a hyperlink

pointing to a URL.

• First Input Delay (FID): Speed metric that represents the time from when a

user first interacts with your site to the time when the browser is able to

respond.

• First Contentful Paint (FCP): the time from navigation to the time when the
browser renders the first bit of content from the DOM.

TECH STACK

• Google Ads API: A programmatic interface to a suite of Google Ads tools. In

particular, we used it to access Google's Keyword Planner.

• Ahrefs: A paid software for backlinks, competitor and SEO analysis. Ahrefs

offers the largest set of SEO data and runs one of the world's most active

crawlers only second to Google itself.

• PageSpeed Insights API: An API access to Google's PageSpeed Insights

which audits the content of a web page, then generates suggestions to make

that page faster.

TECH STACK

• Python + Libraries: Python is an interpreted, high-level, general-purpose

programming language. We used Python to make API calls, organize our

data, build scripts to perform analyses and to build our own crawler. We took

advantage of Python's many modules and libraries, including Numpy, Scipy,

Pandas, Requests and Re (regular expressions module).

• Pandas + SQLite3: Pandas is a Python library providing high-performance

data structures and data analysis tools. Â We used it in combination with

SQLite3 database module for Python and Numpy.

• Beautiful Soup: Python package for parsing HTML and XML documents. It

creates a parse tree for parsed pages that can be used to extract data from

HTML. We used it for some features of our crawler.

• Readability.js: A standalone version of the readability library used for Firefox

Reader View. Given an HTML document, it pulls out the main body text and

cleans it up. We used this python implementation.

• Google Cloud Console: We used the Google Compute Engine (GCP) to run

our apps making API calls, as well as to crawl websites. GCP delivers virtual

machines running in Google's data centers and worldwide fiber network.

https://github.com/buriy/python-readability

THE PROCESS

Part #1: Keyword Research

This was a more challenging part than expected. We had to get at least 100,000
keywords so we can obtain at least one million SERP results.

At the same time, we needed to get keywords that made sense and aren't just plain
words like "if", "and", "you" and so on, to get some statistically valid data.

First, we needed some seed words to generate keyword suggestions. Then we
needed to pull out a random sample while making sure we get keywords that
actually get searched for.

We aimed to ensure that at least half of all keywords are "high-volume" that is with
minimum 1000 searches a month (as we worked with an assumption the results may
be different for those).

Finally, we had to clean up the entire dataset. Here's how we did it:

• We downloaded 2500, most commonly used English nouns, verbs and adjectives
and saved it to CSV file. We used popular dictionaries like Merriam-Webster to
obtain them.

• Using Google Ads API, we accessed the Keyword Planner and seeded those
words for suggestions. We used English for language setting and the US for
location.

• Each word generated around 3,000 to 4,000. Overall we obtained around
797,936 keywords, after dropping duplicates we ended up with 573,278
keywords with different volumes.

• Finally, we cleaned it up of anything shorter than 3 characters, separated
keywords with 1000 searches / month minimum volume and pulled out a random
sample of 80,000 keywords from each subset, by calling the pandas .sample()
method.

THE PROCESS

We took out more keywords. The reason is that we were going to seed them into
Ahrefs Keyword Explorer and Ahrefs has different data than Google.

That means some of the low volume keywords wouldn't have enough Ahrefs data,
and some high-volume keywords would show different volume in Ahrefs, so we
wanted to make sure we get keywords that show solid volumes from both Google
and Ahrefs.

For anyone looking to replicate this or conduct a similar study, please note that
setting up Google Ads API access can be an incredibly painful process that requires
approval too - so budget your time and resources in advance.

THE PROCESS

#2: SERP Results and Ahrefs Data

The next milestone was to obtain SERP results for each of the keywords, as well as
the relevant Ahrefs metrics, such as Volume, Referring Domains and so on.

We used Ahrefs Keyword Explorer 3.0 for this. There's no API access so we had to do
this part manually. Luckily the feature allows you to upload a .csv file and export up
to 25,000 rows in one go (even though the actual number of exported rows were
much lower each time)

As you can imagine, this took a while but eventually we managed to export 1,1
million rows with SERP data in .csv files.

We used our paid account for this. Ahrefs wasn't aware of us doing this study.

THE PROCESS

Part #3: Building Our Crawler

We wanted to collect additional metrics and data, such as H1, Meta and Title tags,

wordcount and presence of some other HTML elements like images and videos.

We built a crawler using python library Beautiful Soup. That was a feasible solution

to collect properties like Meta tags as it was quite reliable but insufficient grabbing

the relevant content part.

The problem here, and I assume other studies faced it too, was that simply

scrapping all text tends to inflate the word-count.

That's because a general library like Beautiful Soup isn't built to establish which part

of the text is what's supposed to be read so it usually grabs other elements of the

page too.

We needed something more accurate so we started to look for a reliable solution

like the one that powers the reader view in web browsers.

After doing some manual testing and comparisons, we settled on Readability.js.

Finally, we deployed our crawler with Google's Compute Engine and let it run for

some time. We were able to scrape about 90% of the URLs in many concurrent

processes.

THE PROCESS

Part #4: PageSpeed Insights and LightHouse Audit

In a similar fashion, we built an app to make API calls for Google PageSpeed

Insights, that implements the Lighthouse Audit. We opted for the SEO audit.

This was quite a resource-consuming task, as Google sets a limit of 25,000 API calls

per 24 hours. Additionally, one audit takes about 40 seconds on average.

40 seconds times million equals about 11,111 hours or 462 days.

Needless to say, with 1 million URLs it would take months to accomplish. Instead, we

only pulled the data for the top and the last rank so we have can make a more

simple comparison.

We broke the entire task into 50 concurrent processes and let it run until completed.

Part #5: Analysis

At this point we ended up with 3 databases. One for each stage. We used pandas to

load all data into efficient data frames and performed the analysis, getting overall

stats for each rank and comparing it.

For more information about this study, contact AuthorityHacker or Michal Ugor at

hello@mchlgr.com

mailto:hello@mchlgr.com

